miércoles, 12 de junio de 2013

                           Densidad

En física y química, la densidad (símbolo ρ) es una magnitud escalar referida a la cantidad de masa contenida en un determinado volumen de una sustancia. La densidad media es la razón entre la masa de un cuerpo y el volumen que ocupa.
\rho = \frac{m}{V}\,
Si un cuerpo no tiene una distribución uniforme de la masa en todos sus puntos la densidad alrededor de un punto puede diferir de la densidad media. Si se considera una sucesión pequeños volúmenes decrecientes \Delta V_k (convergiendo hacia un volumen muy pequeño) y estén centrados alrededor de un punto, siendo \Delta m_k la masa contenida en cada uno de los volúmenes anteriores, la densidad en el punto común a todos esos volúmenes:
\rho(x) = \lim_{k \to \infty} \frac{\Delta m_k}{\Delta V_k} \approx \frac{dm}{dV}

Tipos de densidad

Absoluta

La densidad o densidad absoluta es la magnitud que expresa la relación entre la masa y el volumen de una sustancia. Su unidad en el Sistema Internacional es kilogramo por metro cúbico(kg/m3), aunque frecuentemente también es expresada en g/cm3. La densidad es una magnitud intensiva.
\rho = \frac {m}{V}
siendo \rho, la densidad; m, la masa; y V, el volumen de la sustancia.

Relativa

La densidad relativa de una sustancia es la relación existente entre su densidad y la de otra sustancia de referencia; en consecuencia, es una magnitud adimensional (sin unidades)
\rho_r = \frac {\rho}{\rho_0}
donde \rho_r es la densidad relativa, \rho es la densidad de la sustancia, y \rho_0 es la densidad de referencia o absoluta.
Para los líquidos y los sólidos, la densidad de referencia habitual es la del agua líquida a la presión de 1 atm y la temperatura de 4 °C. En esas condiciones, la densidad absoluta del agua destilada es de 1000 kg/m3, es decir, 1 kg/dm3.
Para los gases, la densidad de referencia habitual es la del aire a la presión de 1 atm y la temperatura de 0 °C.

Media y puntual

Para un sistema homogéneo, la expresión masa/volumen puede aplicarse en cualquier región del sistema obteniendo siempre el mismo resultado.
Sin embargo, un sistema heterogéneo no presenta la misma densidad en partes diferentes. En este caso, hay que medir la "densidad media", dividiendo la masa del objeto por su volumen o la "densidad puntual" que será distinta en cada punto, posición o porción "infinitesimal" del sistema, y que vendrá definida por:
\rho = 
\lim_{V \to 0} \frac {m}{V} =
\frac {d m}{d V}
Sin embargo debe tenerse que las hipótesis de la mecánica de medios continuos sólo son válidas hasta escalas de \scriptstyle 10^{-8}\ \mathrm{m}, ya que a escalas atómicas la densidad no está bien definida. Por ejemplo el núcleo atómico es cerca de \scriptstyle 10^{13} superior a la de la materia ordinaria.

Aparente y real

La densidad aparente es una magnitud aplicada en materiales porosos como el suelo, los cuales forman cuerpos heterogéneos con intersticios de aire u otra sustancia normalmente más ligera, de forma que la densidad total del cuerpo es menor que la densidad del material poroso si se compactase.
En el caso de un material mezclado con aire se tiene:
\rho_{ap} = \frac {m_{ap}}{V_{ap}} = \frac {m_r + m_{aire}}{V_r + V_{aire}}
La densidad aparente de un material no es una propiedad intrínseca del material y depende de su compactación.
La densidad aparente del suelo (Da) se obtiene secando una muestra de suelo de un volumen conocido a 105 °C hasta peso constante.
Da = {W_{SS}\over V_S}
Donde:
WSS: Peso de suelo secado a 105 °C hasta peso constante.
VS: Volumen original de la muestra de suelo.
Se debe considerar que para muestras de suelo que varíen su volumen al momento del secado, como suelos con alta concentración de arcillas 2:1, se debe expresar el contenido de agua que poseía la muestra al momento de tomar el volumen.

Cambios de densidad

En general, la densidad de una sustancia varía cuando cambia la presión o la temperatura, y en los cambios de estado.
  • Cuando aumenta la presión, la densidad de cualquier material estable también aumenta.
  • Como regla general, al aumentar la temperatura, la densidad disminuye (si la presión permanece constante). Sin embargo, existen notables excepciones a esta regla. Por ejemplo, la densidad del agua crece entre el punto de fusión (a 0 °C) y los 4 °C; algo similar ocurre con el silicio a bajas temperaturas.[cita requerida]
El efecto de la temperatura y la presión en los sólidos y líquidos es muy pequeño, por lo que típicamente la compresibilidad de un líquido o sólido es de 10–6 bar–1 (1 bar=0,1 MPa) y elcoeficiente de dilatación térmica es de 10–5 K–1.
Por otro lado, la densidad de los gases es fuertemente afectada por la presión y la temperatura. La ley de los gases ideales describe matemáticamente la relación entre estas tres magnitudes:
\rho = \frac {p\,M}{R\,T}
donde R\, es la constante universal de los gases idealesp\, es la presión del gas, M\, su masa molar y T\, la temperatura absoluta.
Eso significa que un gas ideal a 300 K (27 °C) y 1 atm duplicará su densidad si se aumenta la presión a 2 atm manteniendo la temperatura constante o, alternativamente, se reduce su temperatura a 150 K manteniendo la presión constante.

Medición

Un densímetro automático quien utiliza el principio del tubo en U oscilante.
La densidad puede obtenerse de forma indirecta y de forma directa. Para la obtención indirecta de la densidad, se miden la masa y el volumen por separado y posteriormente se calcula la densidad. La masa se mide habitualmente con una balanza, mientras que el volumen puede medirse determinando la forma del objeto y midiendo las dimensiones apropiadas o mediante el desplazamiento de un líquido, entre otros métodos. Los instrumentos más comunes para medir la densidad son:
  • El densímetro, que permite la medida directa de la densidad de un líquido.
  • El picnómetro, que permite la medida precisa de la densidad de sólidos, líquidos y gases (picnómetro de gas).
  • La balanza hidrostática, que permite calcular densidades de sólidos.
  • La balanza de Mohr (variante de balanza hidrostática), que permite la medida precisa de la densidad de líquidos.
Otra posibilidad para determinar las densidades de líquidos y gases es utilizar un instrumento digital basado en el principio del tubo en U oscilante. Cuyo frecuencia de resonancia está determinada por los materiales contenidos, como la masa del diapasón es determinante para la altura del sonido5














PROBLEMAS 


Un cubo de aluminio de 15 cm de lado tiene una masa de 8.775 kg. ¿Cuál es la densidad del aluminio? Exprésala en kg/m3 y g/c.c.

El radio de la Tierra mide 6.38*106 m y su masa 5.98*1024 kg. ¿Cuál es su densidad?

¿Para qué tipo de sustancias es conveniente usar como medida de la densidad el kg/m3?

La mayoría de los grandes barcos se construyen con acero pese a lo cual flotan en el mar. ¿Cómo es posible?

Completa la siguiente tabla, sustituyendo la x por el número correspondiente:
Densidad en kg/m3 Densidad en g/c.c. Masa en kg Volumen en c.c. Volumen en m3 
1200 x 5 x x 
x x 2.5 x 0.005 
x 2.6 x 300 x 
x x 0.136 10 x 

......................................…


Respuesta:

El volumen será de 15*15*15 = 3375 c.c. y la densidad 8775 g entre 3375 c.c. será de 2.6 g/c.c. o lo que es lo mismo 2600 kg/m3.


El volumen de una esfera es por lo que el volumen de la Tierra será de 1.1*1021m3 y su densidad valdrá 5.4*103 kg/m3 ó 5.4 g/c.c.


Para los gases, que son las sustancias que presentan menor densidad

Porque los barcos no están hechos de acero macizo, en su mayor parte están huecos, por lo que la densidad del barco es mucho menor que la del acero, menor incluso que la del agua, por lo que flotan.



Densidad en kg/m3 Densidad en g/c.c. Masa en kg Volumen en c.c. Volumen en m3 
1200 1.2 5 4.2 0.004 
500 0.5 2.5 5000 0.005 
2600 2.6 780 300 0.0003 
13600 13.6 0.136 10 0.00001




No hay comentarios.:

Publicar un comentario